首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   8篇
  国内免费   9篇
测绘学   2篇
大气科学   2篇
地球物理   34篇
地质学   38篇
海洋学   34篇
自然地理   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   11篇
  2018年   4篇
  2017年   4篇
  2016年   4篇
  2015年   5篇
  2014年   11篇
  2013年   4篇
  2012年   2篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   5篇
  1991年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
基于双线性和三线性的力-位移滞回线假设,导出了钢梁阻尼器隔震系统等效阻尼比与阻尼器延性率的关系;为了获得大阻尼比隔震系统,以尽量减小隔震系统的地震反应,求得了使系统阻尼比为最大的阻尼器相应延性率(即最佳延性率)所需满足的条件;给出了在给定地震地面运动输入条件下,使系统阻尼器变形位移达到最佳延性率的阻尼器初始刚度和屈服位移的确定方法。  相似文献   
12.
钢支撑性能对高层钢结构动力反应的影响   总被引:1,自引:0,他引:1  
钢框架-支撑结构体系是高层钢结构常用的结构体系。支撑的性能对高导钢框架-支撑体系的动力性能影响较大,其中支撑的工细比是关键的影响因素。文中通过大量的计算分析研究支撑长细比对高层钢框架-支撑体系弹塑性地震反应的影响,所得结论可供工程设计时参考。  相似文献   
13.
ABSTRACT

This paper describes the development of a partial factor design method on the bending strength of piles for the Japanese Specifications for Highway Bridges. First, uncertainties in mobilised bending moments and yield bending moments were evaluated by Monte Carlo simulations. Second, the reliability of piles designed by the previous specifications were evaluated on the basis of reliability analysis considering uncertainties in the mobilised bending moments, yield bending moments, and other factors. Finally, a partial factor design method utilising a survey subsurface investigation method and ground type was developed to reach target reliability levels determined by the Standards.  相似文献   
14.
Highly alkaline industrial residues (e.g., steel slag, bauxite processing residue (red mud) and ash from coal combustion) have been identified as stocks of potentially valuable metals. Technological change has created demand for metals, such as vanadium and certain rare earth elements, in electronics associated with renewable energy generation and storage. Current raw material and circular economy policy initiatives in the EU and industrial ecology research all promote resource recovery from residues, with research so far primarily from an environmental science perspective. This paper begins to address the deficit of research into the governance of resource recovery from a novel situation where re-use involves extraction of a component from a bulk residue that itself represents a risk to the environment. Taking a political industrial ecology approach, we briefly present emerging techniques for recovery and consider their regulatory implications in the light of potential environmental impacts. The paper draws on EU and UK regulatory framework for these residues along with semi-structured interviews with industry and regulatory bodies. A complex picture emerges of entwined ownerships and responsibilities for residues, with past practice and policy having a lasting impact on current possibilities for resource recovery.  相似文献   
15.
It is the purpose of this study to investigate the dynamic behaviour of catenary pipelines for marine applications, assuming the combined effect of harmonic motions imposed at the top, and the internal slug-flow. The analysis is based on the assumption of a steady slug-flow inside the pipe that results in a relatively simplified model for the formulation of the internal flow. The slug-flow model is described using several assumptions and empirical correlations which attempt to reveal the ill-understood and concealed properties of the slug-flow. The pipeline dynamics are investigated in the two dimensional space omitting the out-of-plane vibrations. The system of differential equations is generic and accounts for the steady effect of the internal liquid as is conveyed through the structure.The two models, those of the internal slug-flow and the pipeline’s dynamical model, are properly combined through the internal flow terms of the dynamic equilibrium system. The solution provided is achieved using a frequency domain technique which is applied to the linearized governing set. The effect of the slug-flow is assessed through comparative computations with and without internal flow effects. The conclusions are drawn having the structure excited under axial and normal motions paying particular attention to the variation of the dynamic components along the complete length of the pipeline.  相似文献   
16.
选取已有钢筋混凝土柱—钢梁组合结构(RCS)框架的低周期反复试验数据,采用地震工程开源模拟软件OpenSees对其进行有限元模拟,对比骨架曲线与滞回曲线,试验结果与有限元结果吻合较好。随后考察弯矩放大系数(Mc/Mb=0.86、1.48、2.04)、柱轴压比(n=0.06、0.2、0.3、0.6、0.8)对抗震性能的影响,得到了各参数下框架的滞回曲线、骨架曲线和各特征阶段的荷载与位移值。分析了框架的破化过程、延性与强度退化。结果表明:RCS组合框架滞回曲线饱满,具有良好的变形及耗能能力;随着弯矩放大系数的减小、柱轴压比的增大,框架的水平极限承载力降低、屈服状态提前、位移延性降低。分析结果可供有关研究或工程应用参考。  相似文献   
17.
A simplified discrete system in the form of a simple oscillator is developed to simulate the dynamic behavior of a structure founded through footings or piles on compliant ground, under harmonic excitation. Exact analytical expressions for the fundamental natural period and the corresponding damping coefficients of the above system are derived, as function of geometry and the frequency-dependent foundation impedances. In an effort to quantify the coupling between swaying and rocking oscillations in embedded foundations such as piles, the reference system is translated from the footing–soil interface to the depth where the resultant soil reaction is applied, to ensure a diagonal impedance matrix. The resulting eccentricity is a measure of the coupling effect between the two oscillation modes. The amounts of radiation damping generated from a single pile and a surface footing are evaluated. In order to compare the damping of a structure on a surface footing and a pile, the notion of static and geometric equivalence is introduced. It is shown that a pile may generate significantly higher radiation damping than an equivalent footing, thus acting as an elementary protective system against seismic action.  相似文献   
18.
During the past strong ground motions, chimneys constructed according to international standards are representative of similar structures at industrial areas throughout the world, including those collapsed or moderately damaged in earthquake-prone regions. This is due to the specialty of structural characteristics and the special loads acting on the structure such as earthquakes, wind and differences in the level of temperature, etc. In this context, the researchers and designers should focus on the dynamic behavior of chimneys especially under high temperature and seismic effects. For this purpose, the main focus of this study is to evaluate the dynamic response of a chimney under the above-mentioned effects considering soil-structure interaction (SSI). A 52 m steel chimney in Yeşilyurt township of Samsun City in Turkey was studied. The in-situ model testing and numerical models were compared. Before the commissioning of the chimney, a series of tests was realized to define its dynamic characteristics in case of no-heat and after the fabric got to work, the same tests were repeated for the same sensor locations to understand the heat effect on the dynamic response of the chimney. The ambient vibration tests are proven to be fast and practical procedures to identify the dynamic characteristics of those structures. The dynamic testing of the towers promises a widespread use, as the identification of seismic vulnerability of such structures becomes increasingly important. The data presented in this study are considered to be useful for the researchers and engineers, for whom the temperature and SSI effects on steel chimneys are a concern. Using the modal analysis techniques, presented finite element simulation for the soil/pile foundation-chimney interaction system is verified. The results of modal analyses using numerical solutions are shown to have acceptable accuracy compared with results obtained by in-situ test. The present study also aims to provide designers with material examples about the influence of these on the seismic performance of steel chimneys by means of reflecting the changes in the dynamic behavior.  相似文献   
19.
Recent studies have demonstrated that the use of a discretely-spaced row of piles can be effective in reducing the deformations of slopes in earthquakes. In this paper, an approximate strain-dependant Newmark sliding-block procedure for pile-reinforced slopes has been developed, for use in analysis and design of the piling scheme, and the model is validated against centrifuge test data. The interaction of the pile within the slipping soil was idealised using a non-linear elasto-plastic (P–y) model, while the interaction within the underlying stable soil was modelled using an elastic response model in which (degraded) soil stiffness is selected for an appropriate amount of shear strain. This combined soil–pile interaction model was incorporated into the improved Newmark methodology for unreinforced slopes presented by Al-defae et al. [1], so that the final method additionally incorporates strain-dependent geometric hardening (slope re-grading). When combined with the strain-dependent pile resistance, the method is therefore applicable to analysis of both the mainshock and subsequent aftershocks acting on the deformed slope. It was observed that the single pile resistance is mobilised rapidly at the start of a strong earthquake and that this and the permanent slope deformation are therefore strongly influenced by pile stiffness properties, pile spacing and the depth of the slip surface. The model shows good agreement with the centrifuge test data in terms of the prediction of permanent deformation at the crest of the slope (important in design for selecting an appropriate pile layout/spacing i.e. S/B) and in terms of the maximum permanent bending moments induced in the piles (important for appropriate structural detailing of the piles), so long as the slip surface depth can be accurately predicted. A method for doing this, based on limit analysis, is also presented and validated.  相似文献   
20.
In this paper the kinematic seismic interaction of single piles embedded in soil deposits is evaluated by focusing the attention on the bending moments induced by the transient motion. The analysis is performed by modeling the pile like an Euler–Bernoulli beam embedded in a layered Winkler-type medium. The excitation motion is obtained by means of a one-D propagation analysis. A comprehensive parametric analysis is carried out by varying the main parameters governing the dynamic response of piles like the soil properties, the bedrock location, the diameter and embedment in the bedrock of piles. On the basis of the parametric analysis, a new design formula for predicting the kinematic bending moments for both the cross-sections at the deposit–bedrock interface and at the pile head is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号